If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+20b=80
We move all terms to the left:
b^2+20b-(80)=0
a = 1; b = 20; c = -80;
Δ = b2-4ac
Δ = 202-4·1·(-80)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*1}=\frac{-20-12\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*1}=\frac{-20+12\sqrt{5}}{2} $
| 3(x-2)+9/10=-3 | | g(3)=32 | | 3(x-6)+5=-28 | | 14=4y-10 | | 14x3=2x4 | | -5(2x-3)=2(x-10)-37 | | 9+2n=-3 | | −12x4+7x3+6x4=2x3 | | −4(−11+4n)=−3(−2n+9) | | 5n—7=-4 | | 8(x+1)=4x= | | 1/4(x-24)=5+3x | | x-1=x-16 | | 4x+2+10=90 | | 8x+108=-25 | | 4x+2+20=90 | | -1/5b-2-5=-2 | | 8x+108=-2 | | 15x=7,25x | | 2x×-25=-4 | | x5.5x=16.5 | | 3x-+10=14= | | X2+7x=60 | | 7x-2x-1x+4=2x+16 | | 6(x+2)-x=4(x=4)+7 | | 4(x+3)=-5(6-2x) | | -9f-1=62 | | 130=47.38+.617x | | 7x-2x-1x+4=2x=16 | | 1/3+a=4/5 | | 3/90=x/30 | | 3(4x-2)=102 |